Episodes
![Episode 476 - Capturing interstellar storms and gas](https://pbcdn1.podbean.com/imglogo/image-logo/2920772/circled_300x300.png)
Monday Mar 28, 2022
Episode 476 - Capturing interstellar storms and gas
Monday Mar 28, 2022
Monday Mar 28, 2022
Space isn't 'empty' but is often filled with gas and interstellar wind. Gas flows and moves around our universe forming stars, planets and galaxies, but how does it get there? How can you capture the complex motion of interstellar gas? What connects dragonflies with taking pictures of interstellar gas? Strapping a whole bunch of cameras together can help scientists image the faintest of light. Violent eruptions and messy eating by Neutron stars and black holes can help us understand the way interstellar gas moves in space. When a neutron star devours a planet, the remnants and gas flows can tell us a lot about star formation.
Journal References:
- Imad Pasha, Deborah Lokhorst, Pieter G. van Dokkum, Seery Chen, Roberto Abraham, Johnny Greco, Shany Danieli, Tim Miller, Erin Lippitt, Ava Polzin, Zili Shen, Michael A. Keim, Qing Liu, Allison Merritt, Jielai Zhang. A Nascent Tidal Dwarf Galaxy Forming within the Northern H i Streamer of M82. The Astrophysical Journal Letters, 2021; 923 (2): L21 DOI: 10.3847/2041-8213/ac3ca6
- Qing Liu, Roberto Abraham, Colleen Gilhuly, Pieter van Dokkum, Peter G. Martin, Jiaxuan Li, Johnny P. Greco, Deborah Lokhorst, Seery Chen, Shany Danieli, Michael A. Keim, Allison Merritt, Tim B. Miller, Imad Pasha, Ava Polzin, Zili Shen, Jielai Zhang. A Method to Characterize the Wide-angle Point-Spread Function of Astronomical Images. The Astrophysical Journal, 2022; 925 (2): 219 DOI: 10.3847/1538-4357/ac32c6
- N. Castro Segura, C. Knigge, K. S. Long, D. Altamirano, M. Armas Padilla, C. Bailyn, D. A. H. Buckley, D. J. K. Buisson, J. Casares, P. Charles, J. A. Combi, V. A. Cúneo, N. D. Degenaar, S. del Palacio, M. Díaz Trigo, R. Fender, P. Gandhi, M. Georganti, C. Gutiérrez, J. V. Hernandez Santisteban, F. Jiménez-Ibarra, J. Matthews, M. Méndez, M. Middleton, T. Muñoz-Darias, M. Özbey Arabacı, M. Pahari, L. Rhodes, T. D. Russell, S. Scaringi, J. van den Eijnden, G. Vasilopoulos, F. M. Vincentelli, P. Wiseman. A persistent ultraviolet outflow from an accreting neutron star binary transient. Nature, 2022; 603 (7899): 52 DOI: 10.1038/s41586-021-04324-2
![Episode 475 - Tarantula eating worms and Panda’s helpful bacteria](https://pbcdn1.podbean.com/imglogo/image-logo/2920772/circled_300x300.png)
Monday Mar 21, 2022
Episode 475 - Tarantula eating worms and Panda’s helpful bacteria
Monday Mar 21, 2022
Monday Mar 21, 2022
Tarantulas are often in horror films, but they too can be subject to a mysterious invasion and slow death by nasty nematodes. "In Hollywood, you haven't really made it until you've been recognized by those in the field of parasitology" says Jeff Daniels. Why did scientists immortalize Jeff Daniels in the name of a deadly nematode. Slowly loosing control of limbs and organs is a nasty way to go out, but its how nematodes can take down a tarantula. Panda's get a lot of help from bacteria to help them survive with their limited diet. Pandas need a lot of help to survive even though they only eat bamboo. Gut bacteria helps pandas turn their bamboo into all the energy they need to build mass and fat.
- Jacob Schurkman, Kyle Anesko; Joaquín Abolafia; Irma Tandingan De Ley; Adler R. Dillman. Tarantobelus Jeffdanielsi N. Sp. (panagrolaimomorpha; Panagrolaimidae), a Nematode Parasite of Tarantulas. J Parasitol, 2022 DOI: 10.1645/21-42
- Guangping Huang, Le Wang, Jian Li, Rong Hou, Meng Wang, Zhilin Wang, Qingyue Qu, Wenliang Zhou, Yonggang Nie, Yibo Hu, Yingjie Ma, Li Yan, Hong Wei, Fuwen Wei. Seasonal shift of the gut microbiome synchronizes host peripheral circadian rhythm for physiological adaptation to a low-fat diet in the giant panda. Cell Reports, 2022; 38 (3): 110203 DOI: 10.1016/j.celrep.2021.110203
![Episode 474 - Fossils changing the Planet and the planet changing Fossils](https://pbcdn1.podbean.com/imglogo/image-logo/2920772/circled_300x300.png)
Monday Mar 14, 2022
Episode 474 - Fossils changing the Planet and the planet changing Fossils
Monday Mar 14, 2022
Monday Mar 14, 2022
How can fossils change the planet and the planet change fossils? Forming fossils require specific set of circumstances. How can geological changes make the right conditions for fossils to be preserved? What happened 183 million years ago that made it possible to preserve even soft and delicate fossils? Preserving bones is comparatively easy compared to soft tissue and creatures like squid. So what has to happen to preserve these as fossils? How did fossils change the composition of rocks deep in the mantle? When life first emerged on our planet what change did it cause in the type of rocks found deep beneath the surface? life on the surface has changed the rocks we have deep in the earth.
- Sinjini Sinha, A. D. Muscente, James D. Schiffbauer, Matt Williams, Günter Schweigert, Rowan C. Martindale. Global controls on phosphatization of fossils during the Toarcian Oceanic Anoxic Event. Scientific Reports, 2021; 11 (1) DOI: 10.1038/s41598-021-03482-7
- Alcott, L.J., Mills, B.J.W., Bekker, A. et al. Earth’s Great Oxidation Event facilitated by the rise of sedimentary phosphorus recycling. Nat. Geosci., 2022 DOI: 10.1038/s41561-022-00906-5
![Episode 473 - Super materials from Molluscs and Scallops](https://pbcdn1.podbean.com/imglogo/image-logo/2920772/circled_300x300.png)
Monday Mar 07, 2022
Episode 473 - Super materials from Molluscs and Scallops
Monday Mar 07, 2022
Monday Mar 07, 2022
Making super materials by learning the secrets of molluscs and scallops. How are scallops are able to survive the super-cool water in Antarctica. What makes Antarctic scallop shells able to simply brush aside ice? How do you shed a skin of ice from a scallop? What connects scallops with making airplanes more efficient? How do mussels manage to stick so well to things? Is it possible to replicate the stickiness of a mussel? Mussels make themselves near impossible to remove, so can you make them even stickier?
- William S. Y. Wong, Lukas Hauer, Paul A. Cziko, Konrad Meister. Cryofouling avoidance in the Antarctic scallop Adamussium colbecki. Communications Biology, 2022; 5 (1) DOI: 10.1038/s42003-022-03023-6
- Or Berger, Claudia Battistella, Yusu Chen, Julia Oktawiec, Zofia E. Siwicka, Danielle Tullman-Ercek, Muzhou Wang, Nathan C. Gianneschi. Mussel Adhesive-Inspired Proteomimetic Polymer. Journal of the American Chemical Society, 2022; DOI: 10.1021/jacs.1c10936
![Episode 472 - March Mammal Madness 22 - Long lasting Leaf slugs](https://pbcdn1.podbean.com/imglogo/image-logo/2920772/circled_300x300.png)
Monday Feb 28, 2022
Episode 472 - March Mammal Madness 22 - Long lasting Leaf slugs
Monday Feb 28, 2022
Monday Feb 28, 2022
We give a rundown on the 10th annual March Mammal Madness, including the details of the brackets and an explanation on how it all works. More information about March Mammal Madness '22 can be found at the following sites:
- Professor Katie Hinde's blog Mammals Suck Milk
- Arizona State University Library March Mammal Madness Guide
- All ages competitor information slide deck
- @2022MMMletsgo the Official twitter account where all Battles, Announcements and Discussion will occur
One of the #2022MMM creatures, the Leaf Slug can go for long periods without food. Will the Leaf Slug's ability to eat and photosynthesize allow it to conquer #2022MMM? We dive into how leaf slugs manage to survive for so long without food #2022MMM. If you eat a leaf why doesn't that turn you INTO a leaf? How are Leaf Slugs managing to sneak out extra food for months after eating some algae? Forget emergency rations, Leaf Slugs can (solar) power on through long periods without food. How can Leaf Slugs avoid the Nitrogen trap and have a balanced diet for long periods without food.
![Episode 471 - Extreme weather and protecting cities](https://pbcdn1.podbean.com/imglogo/image-logo/2920772/circled_300x300.png)
Monday Feb 21, 2022
Episode 471 - Extreme weather and protecting cities
Monday Feb 21, 2022
Monday Feb 21, 2022
Ways to protect our cities as climate changes causes more extreme weather. How can we better prepare our infrastructure for damage from extreme storms. Extreme events like storm Eunice can wreck havoc on electricity networks. How can we better prepare our cities? Climate changes makes extreme weather more common so what can be done to predict the risk to key infrastructure? Urban areas can swelter in heat waves, but can urban greening help limit the impact? What benefits does urban greening provide to limit flooding and overheating in extreme weather? When an atmospheric river meets a mountain range it can create a deluge.
- Sean Wilkinson, Sarah Dunn, Russell Adams, Nicolas Kirchner-Bossi, Hayley J. Fowler, Samuel González Otálora, David Pritchard, Joana Mendes, Erika J. Palin, Steven C. Chan. Consequence forecasting: A rational framework for predicting the consequences of approaching storms. Climate Risk Management, 2022; 35: 100412 DOI: 10.1016/j.crm.2022.100412
- Y. Kamae, Y. Imada, H. Kawase, W. Mei. Atmospheric Rivers Bring More Frequent and Intense Extreme Rainfall Events Over East Asia Under Global Warming. Geophysical Research Letters, 2022 DOI: 10.1029/2021GL09603
- Katja Schmidt, Ariane Walz. Ecosystem-based adaptation to climate change through residential urban green structures: co-benefits to thermal comfort, biodiversity, carbon storage and social interaction. One Ecosystem, 2021; 6 DOI: 10.3897/oneeco.6.e65706
- M. O. Cuthbert, G. C. Rau, M. Ekström, D. M. O’Carroll, A. J. Bates. Global climate-driven trade-offs between the water retention and cooling benefits of urban greening. Nature Communications, 2022; 13 (1) DOI: 10.1038/s41467-022-28160-8
![Episode 470 - Mysteries in our galaxy unearthed by radio telescopes](https://pbcdn1.podbean.com/imglogo/image-logo/2920772/circled_300x300.png)
Monday Feb 14, 2022
Episode 470 - Mysteries in our galaxy unearthed by radio telescopes
Monday Feb 14, 2022
Monday Feb 14, 2022
Radio telescopes cover large areas and can find strange objects lurking in space. From slowly pulsing magnetars to cosmic ray filaments. Surrounding the black hole at the center of the Milky way are strange but regular filament like structures. Cosmic rays electroncs moving near the speed of light are creating regular 'gash' like filaments around the center of the Milky Way. There is a supermassive blackhole at the center of the Milky Way, but it's surrounded by even weirder things. Astronomers deal with 'transients' from slow ones like supernova to fast pulses like Pulsars...but there might be something in between. A new type of stellar object is pulsing three times an hour dumping out huge amounts of radio waves all relatively close to home.
- F. Yusef-Zadeh, R. G. Arendt, M. Wardle, I. Heywood, W. Cotton, F. Camilo. Statistical Properties of the Population of the Galactic Center Filaments: the Spectral Index and Equipartition Magnetic Field. The Astrophysical Journal Letters, 2022; 925 (2): L18 DOI: 10.3847/2041-8213/ac4802
- N. Hurley-Walker, X. Zhang, A. Bahramian, S. J. McSweeney, T. N. O’Doherty, P. J. Hancock, J. S. Morgan, G. E. Anderson, G. H. Heald, T. J. Galvin. A radio transient with unusually slow periodic emission. Nature, 2022; 601 (7894): 526 DOI: 10.1038/s41586-021-04272-x
![Episode 469 - Creatures with giant mouths and giant eyes](https://pbcdn1.podbean.com/imglogo/image-logo/2920772/circled_300x300.png)
Monday Feb 07, 2022
Episode 469 - Creatures with giant mouths and giant eyes
Monday Feb 07, 2022
Monday Feb 07, 2022
Giant mouths and giant eyes may look cute, but they give some serious advantages when eating. How do whales manage to gulp so much water to feed without drowning? Lunge feeding where whales swallow huge volumes of water is a fast way to eat but how do whales avoid drowning? Whales and humans share some special developments to stop food (or water) going down the wrong way. Would it be possible for humans to eat underwater like a whale? How do large eyes help a creature? A creature that invests in overly large eyes must have some advantage from them. A cartoony crab with huge eyes was actually a pretty fast predator.
- Kelsey N. Gil, A. Wayne Vogl, Robert E. Shadwick. Anatomical mechanism for protecting the airway in the largest animals on earth. Current Biology, 2022; DOI: 10.1016/j.cub.2021.12.040
- Kelsey M. Jenkins, Derek E.G. Briggs, Javier Luque. The remarkable visual system of a Cretaceous crab. iScience, 2022; 25 (1): 103579 DOI: 10.1016/j.isci.2021.103579
![Episode 468 - Stopping frostbite and bacteria using chemistry and physics](https://pbcdn1.podbean.com/imglogo/image-logo/2920772/circled_300x300.png)
Monday Jan 31, 2022
Episode 468 - Stopping frostbite and bacteria using chemistry and physics
Monday Jan 31, 2022
Monday Jan 31, 2022
How can we protect skin from frostbite before it happens? Scientists freeze cells in the lab all the time, so how can that be used to help prevent frostbite? When treating frostbite minutes can make a huge difference. How can we improve prevention of the worst injuries from frostbite? You've heard of sunscreen but what about frostbite cream. Antiobiotic resistance is a serious issue, but what plasma could be a secret weapon. Using plasma we can engineer antimicrobial surfaces. Plasma sintered surfaces can wipe out bacteria.
- Aanchal Gupta, Betsy Reshma G, Praveen Singh, Ekta Kohli, Shantanu Sengupta, Munia Ganguli. A Combination of Synthetic Molecules Acts as Antifreeze for the Protection of Skin against Cold-Induced Injuries. ACS Applied Bio Materials, 2021; 5 (1): 252 DOI: 10.1021/acsabm.1c01058
- Anton Nikiforov, Chuanlong Ma, Andrei Choukourov, Fabio Palumbo. Plasma technology in antimicrobial surface engineering. Journal of Applied Physics, 2022; 131 (1): 011102 DOI: 10.1063/5.0066724
![Episode 467 - Repairing throats and better implants](https://pbcdn1.podbean.com/imglogo/image-logo/2920772/circled_300x300.png)
Monday Jan 24, 2022
Episode 467 - Repairing throats and better implants
Monday Jan 24, 2022
Monday Jan 24, 2022
How can we make stronger implants that don't get rejected by the body? Bioactive materials can help make implants feel more at home. Replacing a knee or a hip requires not just strength but also compatibility. A new coating method makes it easier for implants to fit in. An implant has to be strong yet flexible, friendly to cells but not bacteria - it's challenging. Your vocal chords are subject to extreme forces, so how can we design an implant to repair them? Hydro-gels can help repair damaged organs and tissue even in extreme environments like your vocal chods.
- Imran Deen, Gurpreet Singh Selopal, Zhiming M. Wang, Federico Rosei. Electrophoretic deposition of collagen/chitosan films with copper-doped phosphate glasses for orthopaedic implants. Journal of Colloid and Interface Science, 2022; 607: 869 DOI: 10.1016/j.jcis.2021.08.199
- Sareh Taheri, Guangyu Bao, Zixin He, Sepideh Mohammadi, Hossein Ravanbakhsh, Larry Lessard, Jianyu Li, Luc Mongeau. Injectable, Pore‐Forming, Perfusable Double‐Network Hydrogels Resilient to Extreme Biomechanical Stimulations. Advanced Science, 2021; 2102627 DOI: 10.1002/advs.202102627
![Episode 466 - Tsunamis, underwater volcanoes and magnetic fields](https://pbcdn1.podbean.com/imglogo/image-logo/2920772/circled_300x300.png)
Monday Jan 17, 2022
Episode 466 - Tsunamis, underwater volcanoes and magnetic fields
Monday Jan 17, 2022
Monday Jan 17, 2022
When Tsunami's strike, every extra minute of notice can help save lives. How can scientists better predict the height and journey of a tsunami? We look at the ways scientists can use tectonic plates or magnetic fields to improve tsunami predictions. Where an earthquake occurs can make a big difference to the size of a tsunami. The shallower an earthquake in a thinner sub-ducting plate can lead to higher tsunamis. When you move a large amount of sea-water the earths magnetic field changes, just enough to detect. Like reading the vibrations in seismic waves, earth's magnetic field changes enough for you to identify a tsunami. Using magnetic fields you can measure and asses the height of a tsunami much faster.
- Zhiheng Lin, Hiroaki Toh, Takuto Minami. Direct Comparison of the Tsunami‐Generated Magnetic Field With Sea Level Change for the 2009 Samoa and 2010 Chile Tsunamis. Journal of Geophysical Research: Solid Earth, 2021; 126 (11) DOI: 10.1029/2021JB022760
- Kwok Fai Cheung, Thorne Lay, Lin Sun, Yoshiki Yamazaki. Tsunami size variability with rupture depth. Nature Geoscience, 2021; DOI: 10.1038/s41561-021-00869-z
![Episode 465 - Hedgehogs to mouthwash - Strange tales of the war against bacteria](https://pbcdn1.podbean.com/imglogo/image-logo/2920772/circled_300x300.png)
Monday Jan 10, 2022
Monday Jan 10, 2022
From Hedgehogs to mouthwash, we check in on the arms race against bacteria. MRSA super-bugs are a super problem for humans, but some pre-date the modern era. MRSA super-bugs have been around since the Industrial revolution, at least on hedgehogs. The skin of hedgehogs is a battlefield between Fungus and Bacteria, and whoever wins, we loose. We often focus on Humans vs Bacteria, but it's actually a triple threat with Fungus. The fight Fungus vs Bacteria can lead to the development of antibiotic resistance. The mouth is the gate in the castle like defenses of the human immune system, so what defends it from bacteria attackers? If you have periodontal disease, it can make it easier for other viruses to get into your body. Keeping your mouth free of bacteria plaque can keep your defense against other infections high.
- Jesper Larsen, Claire L. Raisen, Xiaoliang Ba, Nicholas J. Sadgrove, Guillermo F. Padilla-González, Monique S. J. Simmonds, Igor Loncaric, Heidrun Kerschner, Petra Apfalter, Rainer Hartl, Ariane Deplano, Stien Vandendriessche, Barbora Černá Bolfíková, Pavel Hulva, Maiken C. Arendrup, Rasmus K. Hare, Céline Barnadas, Marc Stegger, Raphael N. Sieber, Robert L. Skov, Andreas Petersen, Øystein Angen, Sophie L. Rasmussen, Carmen Espinosa-Gongora, Frank M. Aarestrup, Laura J. Lindholm, Suvi M. Nykäsenoja, Frederic Laurent, Karsten Becker, Birgit Walther, Corinna Kehrenberg, Christiane Cuny, Franziska Layer, Guido Werner, Wolfgang Witte, Ivonne Stamm, Paolo Moroni, Hannah J. Jørgensen, Hermínia de Lencastre, Emilia Cercenado, Fernando García-Garrote, Stefan Börjesson, Sara Hæggman, Vincent Perreten, Christopher J. Teale, Andrew S. Waller, Bruno Pichon, Martin D. Curran, Matthew J. Ellington, John J. Welch, Sharon J. Peacock, David J. Seilly, Fiona J. E. Morgan, Julian Parkhill, Nazreen F. Hadjirin, Jodi A. Lindsay, Matthew T. G. Holden, Giles F. Edwards, Geoffrey Foster, Gavin K. Paterson, Xavier Didelot, Mark A. Holmes, Ewan M. Harrison, Anders R. Larsen. Emergence of methicillin resistance predates the clinical use of antibiotics. Nature, 2022; DOI: 10.1038/s41586-021-04265-w
- Carlos J. Rodriguez-Hernandez, Kevin J. Sokoloski, Kendall S. Stocke, Himabindu Dukka, Shunying Jin, Melissa A. Metzler, Konstantin Zaitsev, Boris Shpak, Daonan Shen, Daniel P. Miller, Maxim N. Artyomov, Richard J. Lamont, Juhi Bagaitkar. Microbiome-mediated incapacitation of interferon lambda production in the oral mucosa. Proceedings of the National Academy of Sciences, 2021; 118 (51): e2105170118 DOI: 10.1073/pnas.2105170118
![Episode 464 - Rogue Planets and glass in meteorites](https://pbcdn1.podbean.com/imglogo/image-logo/2920772/circled_300x300.png)
Monday Jan 03, 2022
Episode 464 - Rogue Planets and glass in meteorites
Monday Jan 03, 2022
Monday Jan 03, 2022
Rogue planets hurtling across space without a place to call home. How do we detect intergalactic nomads like Rogue planets? Just how many rogue planets are out there? Are there rogue planets lurking in our own solar system? Glass inside meteorites can help us understand early earth. How does meteorite rock differ from rock here on earth? What can we piece together about the cataclysmic events that formed glass inside meteorites? Rapidly heating then even more rapidly cooling coalesced glass inside meteorites.
- Núria Miret-Roig, Hervé Bouy, Sean N. Raymond, Motohide Tamura, Emmanuel Bertin, David Barrado, Javier Olivares, Phillip A. B. Galli, Jean-Charles Cuillandre, Luis Manuel Sarro, Angel Berihuete, Nuria Huélamo. A rich population of free-floating planets in the Upper Scorpius young stellar association. Nature Astronomy, 2021; DOI: 10.1038/s41550-021-01513-x
- Nicole X. Nie, Xin-Yang Chen, Timo Hopp, Justin Y. Hu, Zhe J. Zhang, Fang-Zhen Teng, Anat Shahar, Nicolas Dauphas. Imprint of chondrule formation on the K and Rb isotopic compositions of carbonaceous meteorites. Science Advances, 2021; 7 (49) DOI: 10.1126/sciadv.abl3929
![Episode 463 - Unlocking former junk DNA in Rice to feed the planet](https://pbcdn1.podbean.com/imglogo/image-logo/2920772/circled_300x300.png)
Monday Dec 27, 2021
Episode 463 - Unlocking former junk DNA in Rice to feed the planet
Monday Dec 27, 2021
Monday Dec 27, 2021
How was rice turned from a wild grass into a staple crop for over 3 billion people? What secrets are lurking in the 'junk' DNA of rice that can explain it's transformation? What parts of the rice genome have been long overlooked? Can non protein coding parts of a genome help define important traits for plants and animals? Proteins aren't everything; unlocking the secrets of the rice genome. How can we boost rice yields and rice bran oil content?
- X. M. Zheng, J. Chen, H. B. Pang, S. Liu, Q. Gao, J. R. Wang, W. H. Qiao, H. Wang, J. Liu, K. M. Olsen, and Q. W. Yang. Genome-wide analyses reveal the role of noncoding variation in complex traits during rice domestication. Science Advances, 2019 DOI: 10.1126/sciadv.aax3619
- Ze‐Hua Guo, Richard P. Haslam, Louise V Michaelson, Edward C. Yeung, Shiu‐Cheung Lung, Johnathan A. Napier, Mee‐Len Chye. The overexpression of rice ACYL ‐ CoA ‐ BINDING PROTEIN 2 increases grain size and bran oil content in transgenic rice. The Plant Journal, 2019; 100 (6): 1132 DOI: 10.1111/tpj.14503
![Episode 462 - Fish helping make smart materials and renewable tech](https://pbcdn1.podbean.com/imglogo/image-logo/2920772/circled_300x300.png)
Monday Dec 20, 2021
Episode 462 - Fish helping make smart materials and renewable tech
Monday Dec 20, 2021
Monday Dec 20, 2021
What can fish scales teach us about the next generation of smart materials. Why is 'scale armor' often found in video games and on fish so strong? What is special about fish scales that can help us make a new generation of smart materials for clothing and structures? What do 35 million year old fish trapped in mud have to do with wind turbines and batteries? Renewable tech relies on Rare earth metals, so where do we find them? Studying fossilized fish can help us find more sources of rare earth metals to build more renewable tech.
- Haocheng Quan, Wen Yang, Marine Lapeyriere, Eric Schaible, Robert O. Ritchie, Marc A. Meyers. Structure and Mechanical Adaptability of a Modern Elasmoid Fish Scale from the Common Carp. Matter, 2020; DOI: 10.1016/j.matt.2020.05.011
- Junichiro Ohta, Kazutaka Yasukawa, Tatsuo Nozaki, Yutaro Takaya, Kazuhide Mimura, Koichiro Fujinaga, Kentaro Nakamura, Yoichi Usui, Jun-Ichi Kimura, Qing Chang, Yasuhiro Kato. Fish proliferation and rare-earth deposition by topographically induced upwelling at the late Eocene cooling event. Scientific Reports, 2020; 10 (1) DOI: 10.1038/s41598-020-66835-8
![Episode 461 - What trees can help save a city](https://pbcdn1.podbean.com/imglogo/image-logo/2920772/circled_300x300.png)
Monday Dec 13, 2021
Episode 461 - What trees can help save a city
Monday Dec 13, 2021
Monday Dec 13, 2021
Planting trees can help save the planet, but which trees should you plant? How do you decide what trees to plant and where to help the environment and people? Trees can help reduce pollution in the air and ground, so where are they most effective in a city? Planting urban trees can have significant public health benefits, but what trees are most effective to plant? Just what exactly is grass? How can detailed modeling and genetic testing help solve the riddle of grass classification? Are grass leaves and sheathes one thing, or is it stem and leaf like a tree?
- A. E. Richardson, J. Cheng, R. Johnston, R. Kennaway, B. R. Conlon, A. B. Rebocho, H. Kong, M. J. Scanlon, S. Hake, E. Coen. Evolution of the grass leaf by primordium extension and petiole-lamina remodeling. Science, 2021; 374 (6573): 1377 DOI: 10.1126/science.abf9407
- Loren P. Hopkins, Deborah J. January‐Bevers, Erin K. Caton, Laura A. Campos. A simple tree planting framework to improve climate, air pollution, health, and urban heat in vulnerable locations using non‐traditional partners. PLANTS, PEOPLE, PLANET, 2021; DOI: 10.1002/ppp3.10245
![Episode 460 - What shape is the heliosphere](https://pbcdn1.podbean.com/imglogo/image-logo/2920772/circled_300x300.png)
Monday Dec 06, 2021
Episode 460 - What shape is the heliosphere
Monday Dec 06, 2021
Monday Dec 06, 2021
Just what is the heliosphere and how doe sit work? What shape is the heliosphere (spoiler alert, probably not a sphere). At the very edge of our solar system lies the boundary between our neighborhood and interstellar space. Do outside forces from interstellar space jumble up the heliosphere? Sandwiched between Space and the Earth, the Ionsphere buzzes and hums with a pulsing generator. Winds from earth can bend and shape plasma in our ionsphere to make a generator. Moving a conducting object through a magnetic field can generate electricty, and its happening right now 100km above our heads.
- M. Opher, J. F. Drake, G. Zank, E. Powell, W. Shelley, M. Kornbleuth, V. Florinski, V. Izmodenov, J. Giacalone, S. Fuselier, K. Dialynas, A. Loeb, J. Richardson. A Turbulent Heliosheath Driven by the Rayleigh–Taylor Instability. The Astrophysical Journal, 2021; 922 (2): 181 DOI: 10.3847/1538-4357/ac2d2e
- Thomas J. Immel, Brian J. Harding, Roderick A. Heelis, Astrid Maute, Jeffrey M. Forbes, Scott L. England, Stephen B. Mende, Christoph R. Englert, Russell A. Stoneback, Kenneth Marr, John M. Harlander, Jonathan J. Makela. Regulation of ionospheric plasma velocities by thermospheric winds. Nature Geoscience, 2021; DOI: 10.1038/s41561-021-00848-4
![Episode 459 - Bees that eat meat, and Ants with a social stomach](https://pbcdn1.podbean.com/imglogo/image-logo/2920772/circled_300x300.png)
Monday Nov 29, 2021
Episode 459 - Bees that eat meat, and Ants with a social stomach
Monday Nov 29, 2021
Monday Nov 29, 2021
Bees seem friendly and sweet, but what about a bee that eats meat? What has to happen to allow a bee to consume meat instead of pollen. What does honey produced by meat eating bees taste like? How do meat eating bees bite into their food? How different is the stomach of a meat eating bee from it's vegetarian cousins?Forget photos of food on social networks, ants have a whole social stomach for exchanging proteins. Ants carry and exchange all sorts of fluids to help parts of the colony at the right time. Ants second stomach does not contain food but is used to help process fluids for the colony.
- Laura L. Figueroa, Jessica J. Maccaro, Erin Krichilsky, Douglas Yanega, Quinn S. McFrederick. Why Did the Bee Eat the Chicken? Symbiont Gain, Loss, and Retention in the Vulture Bee Microbiome. mBio, 2021; DOI: 10.1128/mBio.02317-21
- Sanja M Hakala, Marie-Pierre Meurville, Michael Stumpe, Adria C LeBoeuf. Biomarkers in a socially exchanged fluid reflect colony maturity, behavior and distributed metabolism. eLife, 2021; 10 DOI: 10.7554/eLife.74005
![Episode 458 - Molecular methods to fight fungi and bacteria](https://pbcdn1.podbean.com/imglogo/image-logo/2920772/circled_300x300.png)
Monday Nov 22, 2021
Episode 458 - Molecular methods to fight fungi and bacteria
Monday Nov 22, 2021
Monday Nov 22, 2021
There's a public health crisis looming beyond the pandemic. Researchers across the world are working to stop the next public health disaster - the rise of antibiotic resistance. We rely on antibiotics to treat various disease but their effectiveness wanes as bacteria builds its resistance. How do we keep track of the changes in bacteria's resistance to antibiotics? What do bird droppings in Cambridge tell us about antibiotic resistance? Developing new antibiotics is tricky, what part of bacteria do you target? Is it better to have a simple molecule or a complex one when tackling bacteria? Bursting the bacteria cell is one way to defeat but its even better to break their building blocks. Fungal infections are growing more resistant to treatment. How can we devleop new categories of anti-fungal treatments?
References
- Joana G. C. Rodrigues, Harisree P. Nair, Christopher O'Kane, Caray A. Walker. Prevalence of multidrug resistance in Pseudomonas spp. isolated from wild bird feces in an urban aquatic environment. Ecology and Evolution, 2021; 11 (20): 14303 DOI: 10.1002/ece3.8146
- Elisabeth Reithuber, Torbjörn Wixe, Kevin C. Ludwig, Anna Müller, Hanna Uvell, Fabian Grein, Anders E. G. Lindgren, Sandra Muschiol, Priyanka Nannapaneni, Anna Eriksson, Tanja Schneider, Staffan Normark, Birgitta Henriques-Normark, Fredrik Almqvist, Peter Mellroth. THCz: Small molecules with antimicrobial activity that block cell wall lipid intermediates. Proceedings of the National Academy of Sciences, 2021; 118 (47): e2108244118 DOI: 10.1073/pnas.2108244118
- Christian DeJarnette, Chris J. Meyer, Alexander R. Jenner, Arielle Butts, Tracy Peters, Martin N. Cheramie, Gregory A. Phelps, Nicole A. Vita, Victoria C. Loudon-Hossler, Richard E. Lee, Glen E. Palmer. Identification of Inhibitors of Fungal Fatty Acid Biosynthesis. ACS Infectious Diseases, 2021; DOI: 10.1021/acsinfecdis.1c00404
![Episode 457 - Not so Empty Space near Earth](https://pbcdn1.podbean.com/imglogo/image-logo/2920772/circled_300x300.png)
Monday Nov 15, 2021
Episode 457 - Not so Empty Space near Earth
Monday Nov 15, 2021
Monday Nov 15, 2021
Space is big and vast, but whilst not densely packed like in Sci Fi, there's still so much going on around Earth's orbit. Mapping out the local neighborhood around Earth's orbit is tricky but important work. We think we have an idea about most Near Earth Asteroids but occasionally they can sneak up on is. A chip off the old block of the Moon has become one of our newest near Earth Objects. How we clean up space junk without touching it or grabbing it with a rocket? Can magnets help us handle delicate space junk? A satellite spiraling out of control is not an easy object to tame and de-orbit.
- Benjamin N. L. Sharkey, Vishnu Reddy, Renu Malhotra, Audrey Thirouin, Olga Kuhn, Albert Conrad, Barry Rothberg, Juan A. Sanchez, David Thompson, Christian Veillet. Lunar-like silicate material forms the Earth quasi-satellite (469219) 2016 HO3 Kamoʻoalewa. Communications Earth & Environment, 2021; 2 (1) DOI: 10.1038/s43247-021-00303-7
- Lan N. Pham, Griffin F. Tabor, Ashkan Pourkand, Jacob L. B. Aman, Tucker Hermans, Jake J. Abbott. Dexterous magnetic manipulation of conductive non-magnetic objects. Nature, 2021; 598 (7881): 439 DOI: 10.1038/s41586-021-03966-6